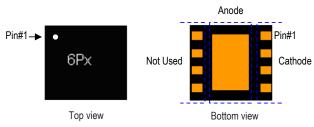
HSMP-386J High Power RF PIN Diode

Data Sheet

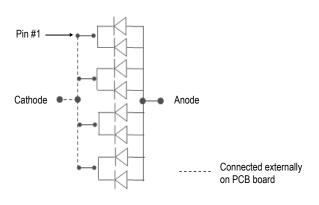


Description

Avago Technologies' HSMP-386J is a High Power RF PIN Diode specifically design for high power handling and low distortion Transmit/Receive switching application. It is housed in QFN 2x2mm size package which is having good thermal resistance.

The unique with 8 dies in parallel configuration results to low IL performance and low series resistance. The HSMP-386J Power diode is built with match diode to ensure consistency in performance.

Package Marking & Orientation



Notes:

6P = Device Code

x = Month code indicates the month of manufacture

Circuit Diagram of HSMP-386J

Features

- High Power Surface Mount Package QFN 2x2
- Match Diode for Consistent Performance
- Low Bias Current Requirement
- Low Series Resistance
- Low Insertion Loss & High Isolation
- Better Thermal Conductivity for Higher Power Dissipation
- Low Failure in Time (FIT) Rate
- Lead-free Option Available
- MSL1 & Lead Free
- Tape & Reel Option Available

Specifications

- Low RS Switching typically 0.65Ω @ 100MHz., 50mA
- High Power Handling Up to 10W (40dBm) at 2GHz, 50mA

Application

• High Power Transmit / Receive Switch for Cellular Infrastructure and Two Way Radio

Table 1. Absolute Maximum Ratings ^[1] at $T_C = +25^{\circ}C$

Symbol	Parameter	Unit	Max Rating
IF	Forward Current (1µs Pulse) per die [2]	Amp	1
P _{IV}	Peak Inverse Voltage	V	100
Tj	Junction Temperature	°C	150
T _{stg}	Storage Temperature	°C	-60 to 150
θ _{jc}	Thermal Resistance ^[3]	°C/W	45
DC P _{diss}	DC Power Dissipation ^[4]	W	2.0

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage to the device.

2. Eight dice are connected in parallel for this device.

3. $TC = +25^{\circ}C$, where T_C is defined to be the temperature at the package pins where contact is made to the circuit board.

4. Maximum DC P_{diss} measured without RF input and maximum rating is base on device junction temperature.

 $P_{diss} = \frac{T (Max.Operating) - 25^{\circ}C}{The matrix I}$

Thermal Resistance

Table 2. Electrical Performance at $T_C = +25^{\circ}C$

	Minimum Breakdown Voltage V _{BR} (V) 100	Typical Forward Voltage V _f (V) 0.85	Maximum Series Resistance R _S (Ohm)	Maximum Total Capacitance C _T (pF) 1.25
			0.77	
Test Conditions	V _R = V _{BR} Measure I _R ≤ 5uA	$I_F = 50 m A$	l _F = 50 mA f = 100 MHz	$V_R = 50V$ f = 1MHz

Table 3. Typical Performance at $T_C = +25^{\circ}C$

	Series Resistance Rs (Ω)	Carrier Lifetime (nS)	Reverse Recovery Time T _{rr} (nS)	Total Capacitance C _T (pF)
	0.65	260	130	0.75
Test Conditions	I _F = 50mA f = 100MHz	$I_F = 50mA$ $I_R = 100mA$	V _R = 5V I _F = 50mA 90% Recovery	$V_R = 50V$ f = 1MHz

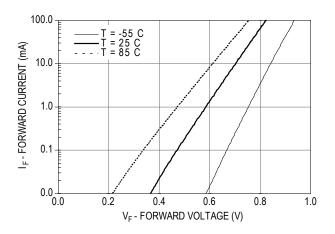


Figure 1. Forward Current vs. Forward Voltage

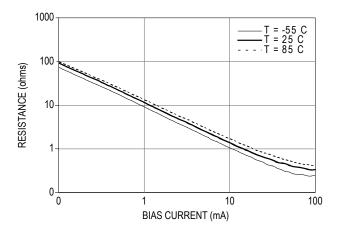
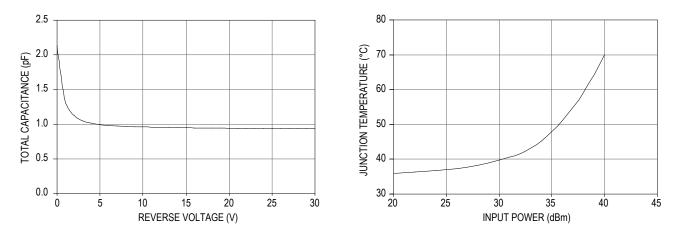
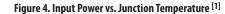
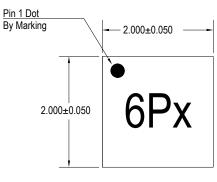
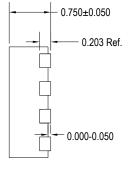


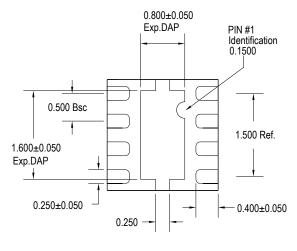
Figure 2. Typical RF Resistance vs. Forward Bias Current.


Figure 3. RF Capacitance vs. Reverse Bias Voltage


Notes:

- 1. Test conditions: f = 2.1 GHz, $I_F = 50 mA$
- 2. Typical values were derived using limited samples during initial product characterization and may not be representative of the overall distribution.

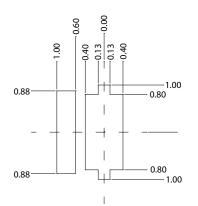

QFN 2x2 Package Dimension

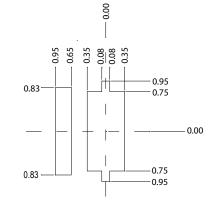
Top View

Side View

Bottom View

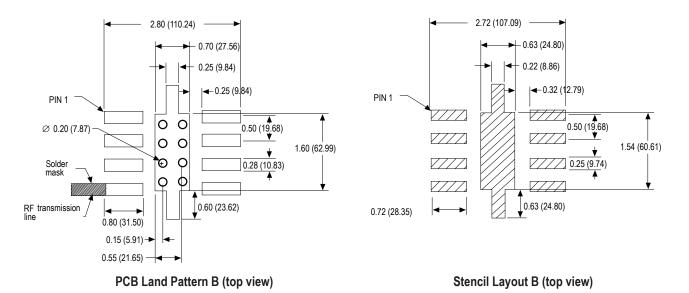
Top View


-0.250


Note:

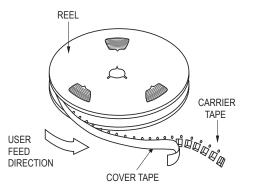
1. All dimensions in millimeters.

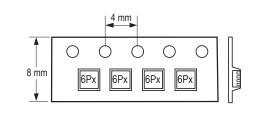
Dimensions are inclusive of plating.
Dimensions are exclusive of mold flash and metal burr.


PCB Land Pattern and Stencil Design

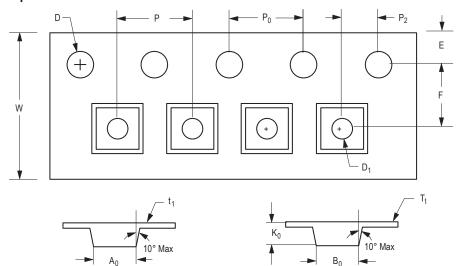
PCB Land Pattern A (top view)

Note :


1. All dimensions in millimeters (mils).


2. For PCB land pattern B and stencil layout B, external trace is required to connect all cathode pads as one single pad.

Ordering Information


Part Number	No. of Devices	Container
HSMP-386J-TR1G	3000	7" Reel
HSMP-386J-TR2G	10000	13" Reel
HSMP-386J-BLKG	100	antistatic bag

Device Orientation

Tape Dimensions

DESCRIPTION		SYMBOL	SIZE (mm)	SIZE (inches)
CAVITY	LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER	A ₀ B ₀ K ₀ P D ₁	$\begin{array}{c} 2.30 \pm 0.05 \\ 2.30 \pm 0.05 \\ 1.00 \pm 0.05 \\ 4.00 \pm 0.10 \\ 1.00 + 0.25 \end{array}$	$\begin{array}{c} 0.091 \pm 0.004 \\ 0.091 \pm 0.004 \\ 0.039 \pm 0.002 \\ 0.157 \pm 0.004 \\ 0.039 + 0.002 \end{array}$
PERFORATION	DIAMETER PITCH POSITION	D P ₀ E	1.50 ± 0.10 4.00 ± 0.10 1.75 ± 0.10	0.060 ± 0.004 0.157 ± 0.004 0.069 ± 0.004
CARRIER TAPE	WIDTH THICKNESS	W t ₁	8.00 + 0.30 8.00 ± 0.10 0.254 ± 0.02	0.315±0.012 0.315±0.004 0.010±0.0008
COVER TAPE	WIDTH TAPE THICKNESS	C T _t	5.4 ± 0.10 0.062 ± 0.001	0.205±0.004 0.0025±0.0004
DISTANCE	CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION)	F P ₂	3.50 ± 0.05 2.00 ± 0.05	0.138 ± 0.002 0.079 ± 0.002

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. AV02-0819EN - December 25, 2007

