STD9N80K5

N-channel 800 V, 0.73 Ω typ., 7 A MDmesh™ K5 Power MOSFET in a DPAK package

Datasheet - production data

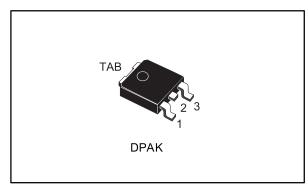
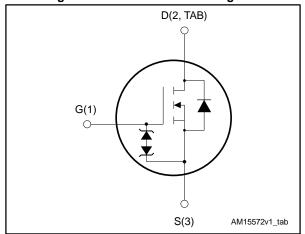



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} R _{DS(on)} max		ΙD
STD9N80K5	V 008	0.90 Ω	7 A

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing	
STD9N80K5	9N80K5	DPAK	Tape and reel	

Contents STD9N80K5

Contents

1	Electric	eal ratings	3
2	Electric	al characteristics	4
		Electrical characteristics (curves)	
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	DPAK (TO-252) type A2 package information	11
	4.2	DPAK (TO-252) packing information	14
5	Revisio	n history	16

STD9N80K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	± 30	V
I_D	Drain current (continuous) at T _C = 25 °C	7	Α
I _D	Drain current (continuous) at T _C = 100 °C	4.4	Α
I _D ⁽¹⁾	Drain current (pulsed)	28	Α
Ртот	Total dissipation at T _C = 25 °C	110	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness 50		V/ns
T _{stg}	Storage temperature range	FF to 150	
Tj	Operating junction temperature range	- 55 to 150	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.14	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by $T_{j\text{max}}$)	2.4	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$; $V_{DD} = 50$ V)		mJ

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 7$ A, di/dt ≤ 100 A/ μ s; VDS(peak) < V(BR)DSSVDD= 640 V

 $^{^{(3)}}V_{DS} \le 640 \text{ V}$

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2 oz Cu

Electrical characteristics STD9N80K5

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	800			V
	Zoro goto voltago Droin	$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$			1	μΑ
IDSS	Zero gate voltage Drain current	V _{GS} = 0 V, V _{DS} = 800 V, T _C = 125 °C			50	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 3.5 A		0.73	0.90	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	.,	1	340	-	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	1	37	ı	pF
Crss	Reverse transfer capacitance	VG3 — V	ı	0.65	ı	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V 0 to 640 V V 0 V	1	61	ı	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{DS} = 0$ to 640 V, $V_{GS} = 0$ V	1	22	ı	pF
Rg	Intrinsic gate resistance	f = 1 MHz , I _D = 0 A	ı	7	ı	Ω
Qg	Total gate charge	$V_{DD} = 640 \text{ V}, I_D = 7 \text{ A}$	-	12	1	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	3.8	-	nC
Q_{gd}	Gate-drain charge	See (Figure 16: "Test circuit for gate charge behavior")	-	6.7	-	nC

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 400 V, I_D =3.5 A, R_G = 4.7 Ω	-	11	-	ns
tr	Rise time	V _{GS} = 10 V	-	5.7	-	ns
t _{d(off)}	Turn-off delay time	See (Figure 15: "Test circuit for resistive load switching times" and	-	65.3	-	ns
t _f	Fall time	Figure 20: "Switching time waveform")	-	13.6	-	ns

 $^{^{(1)}}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{^{(2)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		7	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		28	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 7 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 7 \text{ A}, \text{ di/dt} = 100$	-	292		ns
Qrr	Reverse recovery charge	A/μs,V _{DD} = 60 V See Figure 17: "Test circuit for inductive load switching and diode recovery times"	-	2.66		μC
I _{RRM}	Reverse recovery current		-	18.2		Α
t _{rr}	Reverse recovery time	$I_{SD} = 7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	-	477		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V, T _i = 150 °C See Figure 17: "Test circuit for inductive load switching and diode recovery times"	-	3.91		μC
I _{RRM}	Reverse recovery current		-	16.4		Α

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	30		-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

⁽¹⁾Pulse width limited by safe operating area

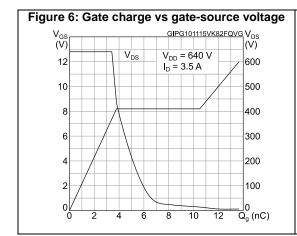
 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

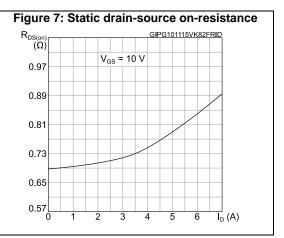
2.1 Electrical characteristics (curves)

Figure 2: Safe operating area GIPD280120161003SOA (A) Operation in this area is limited by R_{DS(on)} t_p= 10µs 10 t_p= 100µs 10⁰ t_p= 1ms t_p= 10ms 10 T_i≤150 °C T.= 25°C single pulse 10⁻² $\overline{V}_{DS}(V)$ 10⁰ 10¹ 10² 10³

Figure 5: Transfer characteristics

ID GIPG101115VK82FTCH


(A)


12 VDS = 20 V

10 8

6 4

2 0 4 5 6 7 8 9 VGS (V)

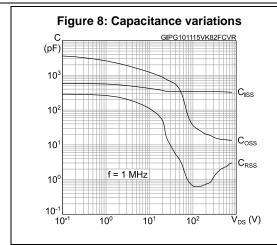


Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPG101115VK82FRON

2.6

2.2

1.8

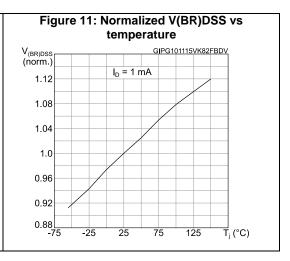
1.4

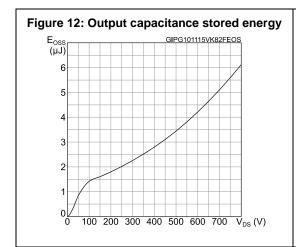
1.0

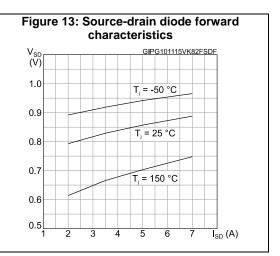
0.6

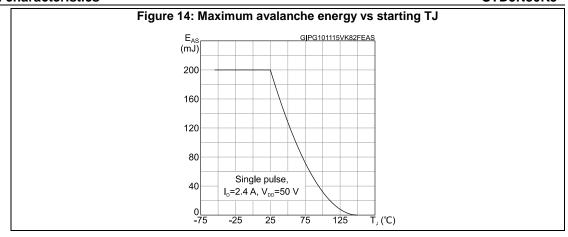
0.2

-75


-25


25


75


125

T_j (°C)

STD9N80K5 Test circuits

3 Test circuits

Figure 15: Test circuit for resistive load

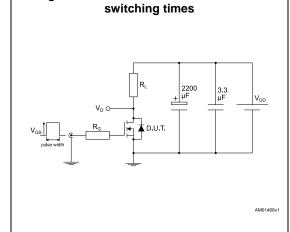


Figure 16: Test circuit for gate charge behavior

12 V 47 kΩ 100 nF D.U.T.

VGS 1 kΩ 100 nF D.U.T.

AM01469v1

Figure 17: Test circuit for inductive load switching and diode recovery times

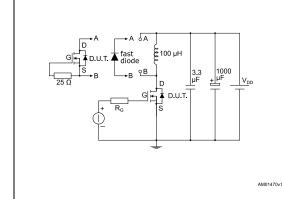


Figure 18: Unclamped inductive load test circuit

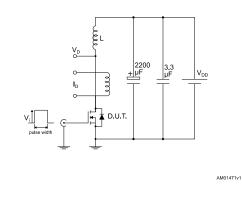


Figure 19: Unclamped inductive waveform

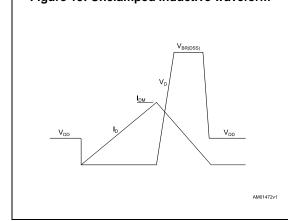
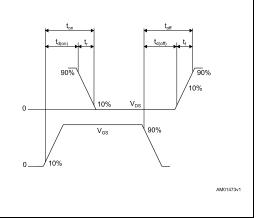
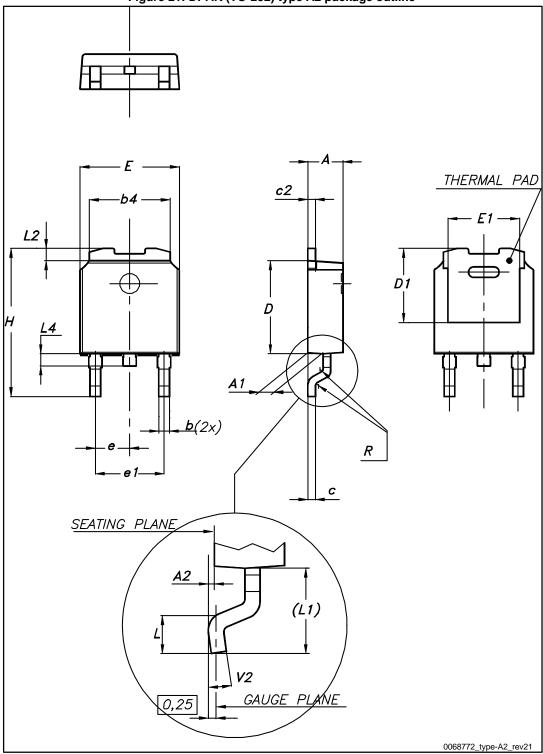



Figure 20: Switching time waveform


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STD9N80K5 Package information

4.1 DPAK (TO-252) type A2 package information

Figure 21: DPAK (TO-252) type A2 package outline

12/17

Table 10: DPAK (TO-252) type A2 mechanical data

	rable for bit tit (10 bot) type / in contained and					
Dim	mm					
Dim.	Min.	Тур.	Max.			
А	2.20		2.40			
A1	0.90		1.10			
A2	0.03		0.23			
b	0.64		0.90			
b4	5.20		5.40			
С	0.45		0.60			
c2	0.48		0.60			
D	6.00		6.20			
D1	4.95	5.10	5.25			
E	6.40		6.60			
E1	5.10	5.20	5.30			
е	2.16	2.28	2.40			
e1	4.40		4.60			
Н	9.35		10.10			
L	1.00		1.50			
L1	2.60	2.80	3.00			
L2	0.65	0.80	0.95			
L4	0.60		1.00			
R		0.20				
V2	0°		8°			

STD9N80K5 Package information

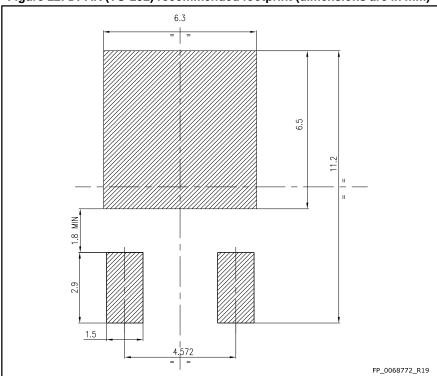
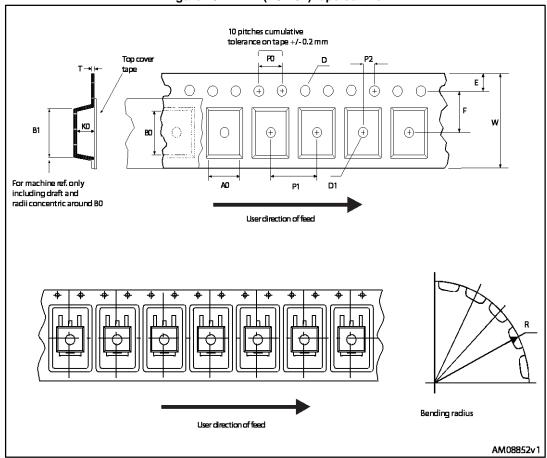



Figure 22: DPAK (TO-252) recommended footprint (dimensions are in mm)

4.2 DPAK (TO-252) packing information

Figure 23: DPAK (TO-252) tape outline

A 40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min.width

AM06038v1

Figure 24: DPAK (TO-252) reel outline

Table 11: DPAK (TO-252) tape and reel mechanical data

Таре			Reel		
Dim.	mm		Dim	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base qty. 2500		2500
P1	7.9	8.1	Bulk qty. 2500		2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Revision history STD9N80K5

5 Revision history

Table 12: Document revision history

Date	Revision	Changes	
20-Oct-2015	1	First release.	
28-Jan-2016	2	Document status promoted from preliminary to production data. Updated Section 4.1: "DPAK (TO-252) type A2 package information". Inserted Section 2.1: "Electrical characteristics (curves)". Minor text changes.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

