Dual, Wide Bandwidth Analog Switches

Features

- Single-Supply Operation (+2V to +6 V)
- Rail-to-Rail Analog Signal Dynamic Range
- Low On-Resistance (7.2-ohm with 5V supply) Minimizes Distortion and Error Voltages
- On-Resistance Flatness, 3-ohm typ.
- Low Charge Injection Reduces Glitch Errors. $\mathrm{Q}=1.6 \mathrm{pC}$ typ.
- High Speed. $\mathrm{t}_{\mathrm{ON}}=7 \mathrm{~ns}$ typ.
- Wide - 3 dB Bandwidth: 326 MHz
- High-Current Channel Capability: $>100 \mathrm{~mA}$
- TTL/CMOS Logic Compatible
- Low Power Consumption ($5 \mu \mathrm{~W}$ typ.)
- Packaging (Pb-free \& Green Available) - 8-pin, 118 mil plastic MSOP (U)

Applications

- Audio, Video Switching and Routing
- Battery-Powered Communication Systems
- Computer Peripherals
- Telecommunications
- Portable Instrumentation
- Mechanical Relay Replacement
- Cell Phones
- PDAs

Description

The PI5A127 is a dual SPST (single-pole single-throw) analog switches designed for single supply operation. These high-precision devices are ideal for low-distortion audio, video, signal switching and routing.
The PI5A127 is a normally closed (NC) switch.
Each switch conducts current equally well in either direction when on. When off, they block voltages up to $\mathrm{V}+$.
These switches are fully specified with +5 V and +3.3 V supplies. With +5 V , they guarantee <10-ohm ON-resistance. On-resistance matching between channels is within 2 -ohm. On-resistance flatness is less than 5 -ohm over the specified range. These switches also guarantee fast switching speeds ($\mathrm{t}_{\mathrm{ON}}<20 \mathrm{~ns}$).
These products are available in 8-pin SOIC and MSOP plastic packages for operation over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

Functional Diagrams, Pin Configurations and Truth Tables

Absolute Maximum Ratings
Voltages Referenced to GND
V_{+} \qquad -0.5 V to +7 V
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}$ (Note 1) \qquad -0.5 V to $\mathrm{V}++2 \mathrm{~V}$. or 30 mA , whichever occurs first Current (any terminal except COM,NO,NC) \qquad 30 mA

Current, COM, NO, NC 100 mA
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) \qquad 120 mA

Thermal Information

Continuous Power Dissipation
$-6\left(\right.$ derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 550 mW

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$

Note 1:

Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30 mA .

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5 V Supply $\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%\right.$, $\left.\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(2)}$	Typ. ${ }^{(1)}$	Max. ${ }^{(2)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0		V+	V
On Resistance	$\mathrm{R}_{\text {on }}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.5 \mathrm{~V} \end{aligned}$	25		7.2	10	W
			Full			12	
On-Resistance Match Between Channels ${ }^{(4)}$	$\mathrm{DR}_{\text {on }}$		25		0.20	2	
			Full			4	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\text {FLat(on) }}$	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {No }} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 2.5 \mathrm{~V}, 4 \mathrm{~V} \end{aligned}$	25		2.72	3.5	
			Full			4	
NO or NC Off Leakage Current ${ }^{(6)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{NO}(\mathrm{FFF} \text { or }} \\ & \mathrm{I}_{\mathrm{NC}(\mathrm{OFFF})} \end{aligned}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CoM}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$	25		0.18		nA
			Full	-200		200	
COM Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {Сом(OFF) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CoM}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{No}} \\ & \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 0 \mathrm{~V} \end{aligned}$	25		0.20		
			Full	-200		200	
COM On Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {Com(ON) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {Com }}=+4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+4.5 \mathrm{~V} \end{aligned}$	25		0.20		
			Full	-200		200	

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of ON -resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.

Electrical Specifications - Single +5 V Supply ($\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, G \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$)

Parameter	Symbol	Conditions	Temp(${ }^{\circ} \mathrm{C}$)	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Logic Input							
Input High Voltage	V_{IH}	Guaranteed logic High Level	Full	2			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed logic Low Level				0.8	
Input Current with Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-1	0.005	1	
Input Current with Voltage Low	$\mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-1	0.005	1	

Turn-On Time	${ }^{\text {toN }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, Figure 1	25	7	15	ns
			Full		20	
Turn-Off Time	${ }^{\text {OFF }}$		25	1	7	
			Full		10	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \text { Vgen }=0 \mathrm{~V}, \\ & \text { Rgen }=0 \Omega \text {, Figure } 2 \end{aligned}$	25	1.6	10	pC
Off Isolation	OIRR	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=10 \mathrm{MHz}, \text { Figure } 3 \end{aligned}$		-43		
Crosstalk	Xtalk	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=10 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$		-43		
NC or NO Capacitance	C(off)	$\mathrm{f}=1 \mathrm{kHz}$, Figure 5		5.5		pF
COM Off Capacitance	Ccom(off)			5.5		
COM On Capacitance	Ccom(on)	$\mathrm{f}=1 \mathrm{kHz}$, Figure 6		13		
-3dB Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$, Figure 7	Full	326		MHz
Distortion	D	$\mathrm{R}_{\mathrm{L}}=10$		0.2		\%

continued

| Parameter | Symbol | Conditions | Temp $\left({ }^{\circ} \mathrm{C}\right)$ | Min. ${ }^{(1)}$ | Typ. ${ }^{(2)}$ | Max. ${ }^{(1)}$ | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Supply | | | | | | | |
| Power-Supply Range | $\mathrm{V}+$ | | 2 | | 6 | V | |
| Positve Supply Current | $\mathrm{I}+$ | $\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or V_{CC},
 $\mathrm{V}+$
 All Channels on or off | Full | | | | |

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.

Electrical Specifications - Single +3.3V Supply ($\mathrm{V}+=+3.3 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$)

Parameter	Symbol	Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	$\mathrm{V}_{\text {analog }}$			0		V+	V
On-Resistance	R_{oN}	$\begin{aligned} & \mathrm{V}+=3 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	25		12	18	
			Full			22	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{Com}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{No}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 2.5 \mathrm{~V} \end{aligned}$	25		1	1	
			Full			2	
On-Resistance Flatness ${ }^{(3,5)}$	$\mathrm{R}_{\text {FLAT(ON) }}$		25		3.5	4	
			Full			5	

Dynamic

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of ON -resistance measured.

Test Circuits/Timing Diagrams

C_{L} INCLUDES FIXTURE AND STRAY CAPACITANCE

$$
v_{\text {OUT }}=v_{\text {NO }}\left(\frac{R_{L}}{R_{L+}+R_{\text {ON }}}\right)
$$

LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE OPPOSITE LOGIC

* 1.5V FOR 3.3V SUPPLY

Figure 1. Switching Time

Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

Figure 3. Off Isolation

Figure 5. Channel-Off Capacitance

Figure 7. Bandwidth

Figure 4. Crosstalk

Figure 6. Channel-On Capacitance

(4) PERICOM
 Pericom Semiconductor Corporation 3545 N. 1st Street, San Jose, CA 95134
 1-800-435-2335 • www.pericom.com

Notes:

1) Controlling Dimensions inMillimeters
2) Ref. JEDEC MO-187E/AA

Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI5A127UX	U	8-pin MSOP
PI5A127UEX	U	Pb-free \& Green, 8-pin MSOP (Tape/Reel)

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- Adding an X Suffix = Tape/Reel

