Power MOSFET 30 V, 106 A, Single N–Channel, SO–8 FL

Features

- Integrated Schottky Diode
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

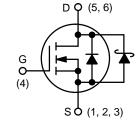
Applications

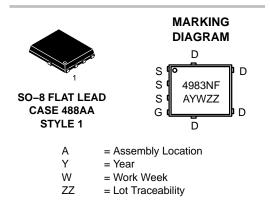
- CPU Power Delivery
- Synchronous Rectification for DC–DC Converters
- Low Side Switching
- Telecom Secondary Side Rectification

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Para	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Current R _{0.IA}		$T_A = 25^{\circ}C$	۱ _D	30	A
(Note 1)		T _A = 85°C		22	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	PD	3.13	W
Continuous Drain		T _A = 25°C	I _D	48	А
Current $R_{\theta JA} \leq$ 10 sec	Steady State	T _A = 85°C		34	
Power Dissipation $R_{\theta JA,} t \leq 10 \text{ sec}$		$T_A = 25^{\circ}C$ P_D Steady		7.7	W
Continuous Drain		$T_A = 25^{\circ}C$	Ι _D	22	А
Current R _{0JA} (Note 2)		T _A = 85°C		16	
Power Dissipation $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$	PD	1.7	W
Continuous Drain Current $R_{\theta,JC}$		$T_C = 25^{\circ}C$	۱ _D	106	A
(Note 1)		T _C = 85°C		76	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	38	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	320	A
Current limited by pac	ckage	T _A = 25°C	I _{Dmaxpkg}	100	Α
Operating Junction ar Temperature	Operating Junction and Storage Temperature			–55 to +150	°C
Source Current (Body Diode)			۱ _S	54	Α
Drain to Source dV/dt			dV/dt	6	V/ns
Single Pulse Drain–to–Source Avalanche Energy (V _{DD} = 50 V, V _{GS} = 10 V, I _L = 45 A _{pk} , L = 0.1 mH, R _G = 25 Ω)			EAS	101	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.




ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
30 V	2.1 mΩ @ 10 V	106.4	
30 V	3.1 mΩ @ 4.5 V	106 A	

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4983NFT1G	SO-8FL (Pb-Free)	1500 / Tape & Reel
NTMFS4983NFT3G	SO–8FL (Pb–Free)	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	3.3	
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	40	°C/W
Junction-to-Ambient - Steady State (Note 2)	R_{\thetaJA}	74	C/VV
Junction-to-Ambient – t \leq 10 sec	$R_{ hetaJA}$	16.3	

Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_{D} = 1.0 mA$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 10 mA, referenced to 25°C			15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			500	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 1.0$ mA		1.2	1.7	2.3	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	$I_D = 10 \text{ mA}$, referenced to 25°C			5.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		1.6	2.1	
			I _D = 15 A		1.6		
		V _{GS} = 4.5 V	I _D = 30 A		2.5	3.1	mΩ
			I _D = 15 A		2.5		
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, I _D = 15 A			60		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				3250		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz	z, V _{DS} = 15 V		1340		
Reverse Transfer Capacitance	C _{RSS}				90		
Total Gate Charge	Q _{G(TOT)}				22.6		
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 30 A			2.9		nC
Gate-to-Source Charge	Q _{GS}				7.0		
Gate-to-Drain Charge	Q _{GD}				6.9		1
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}, I_D = 30 \text{ A}$			47.9		nC
SWITCHING CHARACTERISTICS (Note 4)				-	-	-	-

Turn-On Delay Time	t _{d(ON)}		13.5	
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,	24.9	20
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D}$ = 15 A, R _G = 3.0 Ω	28.7	ns
Fall Time	t _f		10.7	

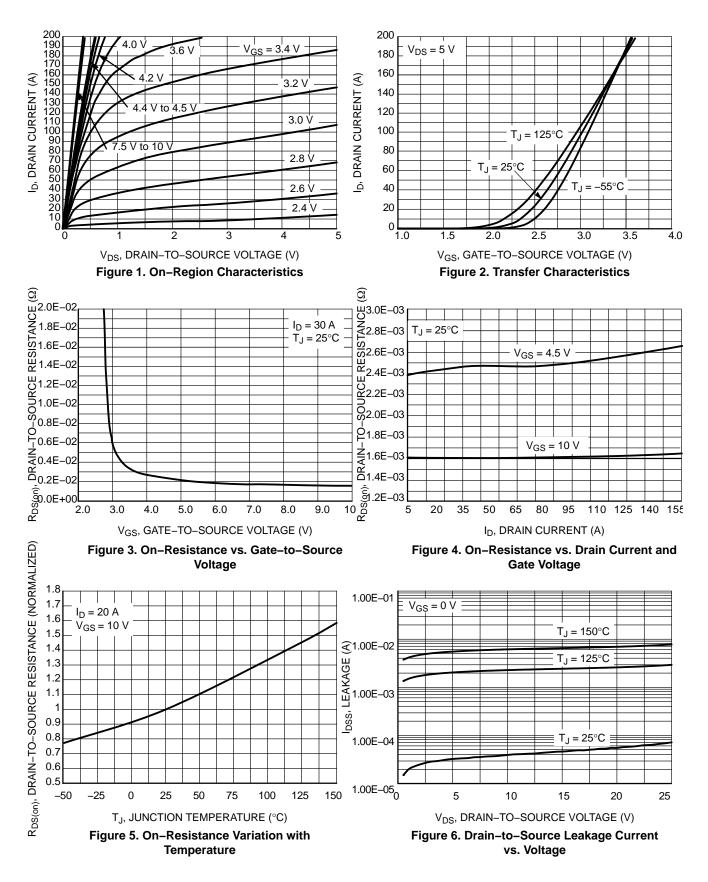
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: pulse width $\leq 300 \,\mu$ s, duty cycle $\leq 2\%$. 4. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

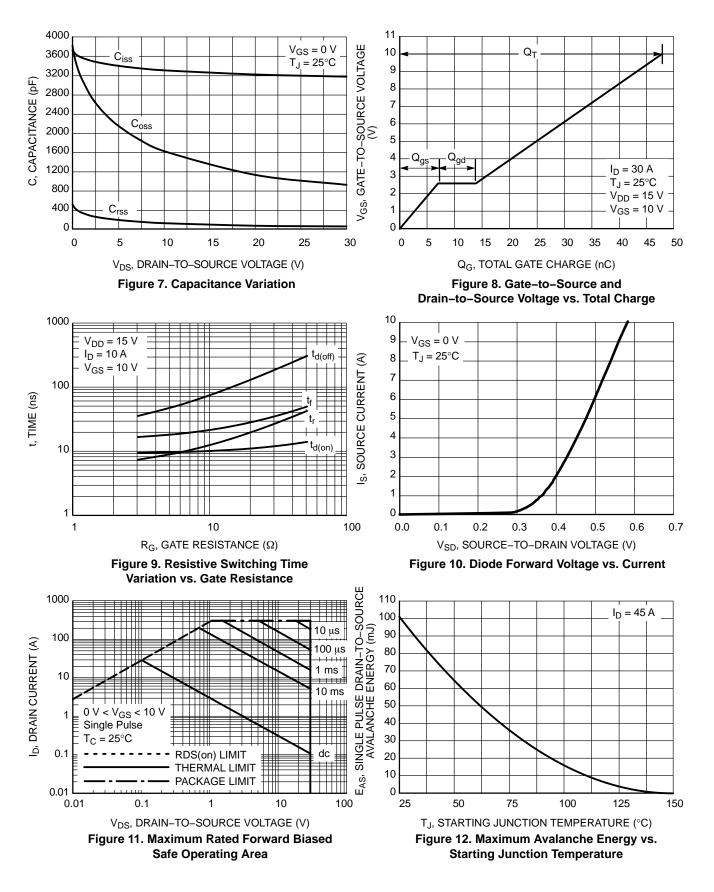
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (N	ote 4)						1
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω			9.4		ns
Rise Time	tr				16.7		
Turn-Off Delay Time	t _{d(OFF)}				35.2		
Fall Time	t _f				7.4		
DRAIN-SOURCE DIODE CHARACT	ERISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$ $I_{S} = 2 A$	$T_J = 25^{\circ}C$		0.4	0.7	
			T _J = 125°C		0.32		V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 100 A/μs, I _S = 2 A			45		ns
Charge Time	t _a				23		
Discharge Time	t _b				22		
Reverse Recovery Charge	Q _{RR}				50		nC
PACKAGE PARASITIC VALUES				-			
Source Inductance	L _S				0.65		nH
Drain Inductance	L _D	T _A = 25°C			0.20		
Gate Inductance	L _G				1.5		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

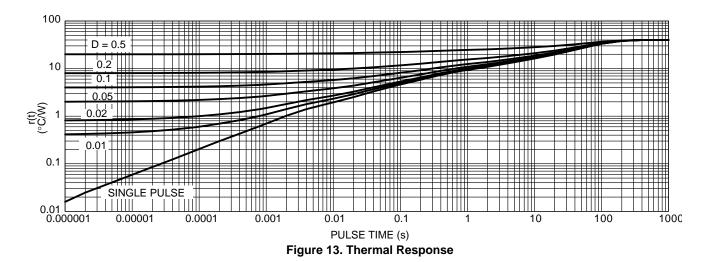
1.0

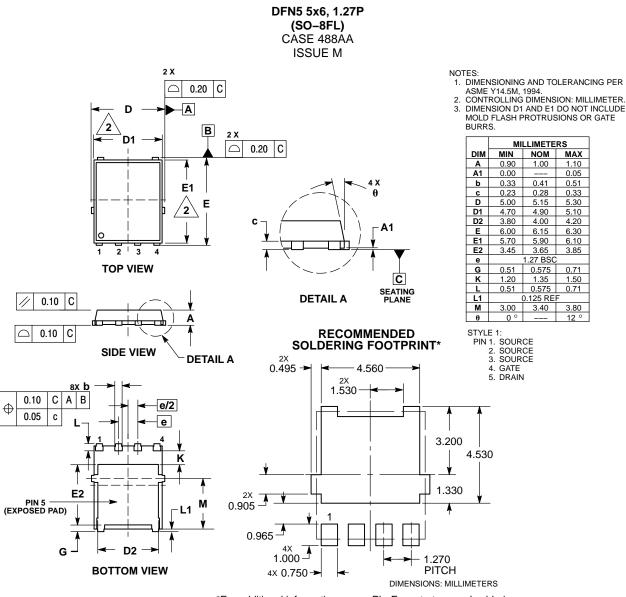

Ω

R_G


Gate Resistance

4. Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES


TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the intervent of the patient to the patien

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative